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The Problem

In exploratory research, regression analysis is often applied to

nonexperimental,multivariable data in an attempt to reveal relationships

beDweea a dependent variable and a set of regressor variables. Conceptually,

the variation in the dependent variable may be separated into three parts,

(i) that which can be attributed to the regressor variables individually,

(ii) that which can be attributed to the regressor variables as a group

and (iii) the residual variation which is unexplained by the regression.

Parts (i) and (ii) together comprise the total variation explained by

the regression. Since part (i) is composed of the so-called unique sums

of squarer- it will be referred to as the unique portion of the unexplained

variation. The purposeof this note is to analyze the nonunique portion

of explained variation (i.e. part (ii)), a subject which has apparently

not received much attention heretofore:2/ The motivation for doing so is

the promise of a more complete understanding of the relationship of the

dependent variable and the regressor variables. Since the procedure for

partitioning the nonunique part may be regarded as an extension of a method

for obtaining the unique sums of squares we will begin with a discussion

of the latter.

1/ Also called the extra or added sums of squares.
2/ During preparation of this note, two articles were discovered which

present essentially the same results as this paper but with another
approach and somewhat different motivation. See R.G.Newton and D.J.
Spurrell, "A Development of Multiple Regression for the Analysis of
Routine Data," Applied Statistics, Vol. 16, No. 1, 1967 and "Exaaples
of the Use of Elements for Clarifying Regression Analysis," Applied
Statistics, Vol. 16, No. 2, 1967.
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One measure of the variation in the, dependent variable is the

sum of squares of deviations of the observations from the mean. More

1 v denote the 4th nhoo rvatinn ()Utile dependentarm i
.t

v -i

variable and let be the mean of m observations. Then

(y

i)2
S(Y) le

is the sum of squares of the deviations,.

If a regression analysis is carried out using, say, three regresSor

Variables the result is an equation of the form

= bo + Xlb
1
4.X b

2
+ X

3
b
3

Given a set of observations, X
11 '

X
2

and X
132

one can then estimate

the corresponding value of the dependent variable Yi. The amount of

variation which is explained by the regression on X1, X2 and X3 is
m

S(X X X ) E - i)2
1 2 3 i.1 i

and the proportion of the total variation which has been accounted for

by the.regression is
S(X

1
X
i
K
3
)

R2 (X X X )
1 2 3 S(Y)

which is the square of the multiple correlation coefficient. The residual

variation which is unaccounted for by the regression, viii be denoted as

A

E(Yi Yi)

i=1
The procedure for obtaining the unique contribution of, say, X1

to the sum of squares is to regress Y against X2 and X3. This yields

S(X2X3), the variation accounted for by the variables X2 and X3.



The unique sum of squares associated with X1 is now defined to be

7(X1) S(XIX2X3) S(X2X3)

Thus 7(X1) represents the additional explained sum of squares when

y 4es th= L=6Lemiuut last. (In actual computation. )1X ) canGIMIIaG%& 11..NO

1

be computed in another way so that it is not necessary to run two

complete regressions.)

Using Table 1 we may now look again at.our way of classifying

the total variation. At this stage of the development the nonunique

portion is shown simply as the difference between the total, variation

and the other two known components. Before proceeding to the analysis

some interpretive remarks may be helpful.

Table 1
11111.6. ..111111111.17.

Classification
of the Variation

Sum of
Squares.

Unique Portion 7(X1) Y(X2) AX3)

Nonunique Portion S(Y) (Yi-td2 - - 7(X2) - 7(X3)

Residual

Total S(Y)

The unique contributions of the variables are often calculated

because they provide an indication of the relative importance of the several

regressor variables in explaining the dependent variables They are potentially

4.-4 ..e,e+^^.",....:
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misleading however because they neglect the nonunique portion of explained

variation. Looking at the origin of this variation will illuminate the

problem.

To examine the nonunique variation more deeply requires the notion

of orthogonality among the data vectors, a concept developed in'some

3/ 4/
detail in books such as Goldberger-- or Draper and Smith . Briefly, it

can be explained as follows. Let Xi and'Xj now be column vectors of

observations on the i
th

and j
th

variables expressed as deviations from

the mean. If there are in observations these wilt be m-dimensional data

vectors. Two such vectors are said to be orthogonal if XIXJ = 0', that

is if the vectors are at right angles. to one another in m-space. In

general, the cosine of the angle between the vectors is equal to the

sample correlation coefficient between the two. variables. If a set of

data vectors are mutually orthogonal then they are uncorrelated with one

another and the unique sums of squares will add up to the total explained

sum of squares. In other words, each regressor variable is bringing new

information to the regression.

3/ A.S. Goldberger, Ecammetr_Ilicmm, (New York: John Wiley, 1964).
4/ N.R. Draper and H.Smith, ttp.g.Leutemes, (New York:

John Wiley, 1964).



If the regressors are to some extent redundant, however, we have

a departure from orthogonality. When the departure is considerable

this condition is known as multicollinearity and is due to high inter-

5/
correlations among the regressor variables. The nonunique portion of

explained variation is then nonzero and the problem of determining the

contributions of individual variables is inherently ambiguous. The next

section, however, describes a way of partitioning the nonunique variation

which can be an aid to interpreting the results of regression analyses.

The Three Variable Case

refinition of Commonalities

For ease of exposition, the following discussion of the partitioning

procedure will be restricted to three independent variables. The equations

required for the n-- variable case are given in the Appendin.

First, recall that the unique contribution of X1 was defined as the

sum of squares with all three variables less the sum of squares associated

withtheregressiononLandKri.e.

(X
1
) = S(X

1
X 2X

3
) S(X2 X

3
)

or in general

(1)
1
(X ) = S(X X X ) S(X

j
X
k
);

k'

Here and subsequently in the three variable case i = 1,2,3 and iitjlik

5/ In the extreme multicollinearity case, a data vector can be written
as an exact linear combination of other data vectors. This condition
makes regression analysis impossible because matrix inversion cannot
be carried out.
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This notion has a direct extension in the sense that S(X X X
k
) S(X )

is a measure of the effect of adding the variables Xi and Xj to the

reqresuition last, W,A mAy express th40 by .4T44.4113

(2) S (X X
J

X
k

) S (Xit) 1111 71(X1) + 7,(7. ) + Y
2

(X X
j

)

where
'2

(X
i
X
j
) is that part of the difference in the sum of squares

which may be associated with 2 or X
1.

It may be regarded as that part

attributable to X
i
and X in common, or-for short, the commonality of

X
i
X
j* In particular since there are two variables involved it will be

referred to as a second-order commonality.

Rearranging equation (2).provides us with a definition of second

order commonalities, viz.

(3) yKX1) = S(XiXiXic) S(Ck) VXI) - Ipj)

The definition is recursive in that the unique sums of squares have been

defined by equation (1).

In analogy with equation (2) we may write the total sum of squares

attributable to a three variable regression as

(4) S(X.,X
j
X ) Yi(Xi) + Yi(Xj) + Yl(Xk) + 72(XiXi) + Y2(XiXk)

Y2 (X4 Xk) + Y3 (XiXi Xk)

Then rearranging equation (4) we have the definition of the third-order

commonality.

(5) Y3(Xiyk) S(XiXiKk) 71(X1) - /:1(X3) Y1(Xk) v2(xixj)

72(xixk) Y2(x3 xk)

',P)
if t
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Reduced Form of the .Commonalities

Collecting the three equations defining.commonalities we have

(1) .71(Xi) = S(X4X4k) - S(X4X.k);

(3). 72(XiXj) = S(XiXj3r.k) S(Xk) 71(X1) Yi(Xj);

(5) 73(Xiyk) S(XiXjy - 71(X1) yxj) vi(k) 72(Xix)

..;-72(xixk) Y2(xixk)

The commonality terms on the right side of this.set of recursive

equations can now be eliminated yielding

(6) Y1 (Xi ) = S(X X X
k
) - S(X

j
Xk)

(7) 72 ( XiX ) (XiXjc) + S (Xj Xk). + S (XiX.k) - S(Xk)

(8) 73(XiXiXk) = S(Xiyk) - S(XiXi) - S(XiXk) - S(XiXk) + S(Xi)

+ S(Xj) + S(Xk)

The foregoing way of expressing the commonalities will be referred'

to as the reduced form.

Dividing (6), (7) and (8) by S(Y) gives alternative forms which

be called commonality -oefficients.

(9) U(Xi) = 71(Xi)/S(Y) = R
2.aiXXk) 2(x

ixk) ;

(10) C (XiX ) = V2 (XiX ) /S (Y) = -R2(XiX Xk) + R2 (X X). +R
2
(XiXk) - R

2
(Xk) ;

(11) C(X
l
X ) = Y

3
(X

i
X
j
X
k
)/S(Y) = R2(X

1
X X

k
) - R2(XiXi ) - R2(X

i
Xk)i

X
lt i

- R2(XjXk) + R2(Xi) + R2(Xj) + R2(Kk)
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In this way the part of the total variation associated with a

combination of variables can be calculated from the appropriate multiple

correlation coefficients.

PartitioniaLIIUIPALS4LILVEME

Using the commonality definitions in equations (1), (3) and.(5),

the sum of squares attributable to a regression can be written in an

interesting form. Taking equations (3) and(5) and.00lving for .

S(Xk) gives

(12) S (Xk) st.73.(Xk) + 72(X3 Xk) + 72(XiXk) + 73(XiX3 Xk) ,

solving equations (1) and (5) for 4S(XiXi) gives

(13) S(Xly 'l 71(1) + 72(XiX1) + 72(XIXO + MX
j
,Xu)

4
.+ 73(Xiyk)

an solving equation (5) for S(XiXjXk) gives

(14) Mi. Xiy 71(X1) TN + 71(Xk) 72(Xik1) + 72(XiXk)

+ Y
2
(X
j k
X ) + 7 (X

i
X
j
X
k
).

In each equation the sum of squares due to the regression is equal
to the sum of all unique sums of squares and

commonalities associated with
the regressor variables. The meaning of the commonalities is now clear

in terms of equation (12). For example, 72(Xiy is that part of th;a

sum of squares which is common to S(X ) and S(X )and no other;yyjk) is

common to S(Xi), S(Xj) and S(Xk) and no other; etc.
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GtOuto of Variables

The equations presented can easily be ex:ended to apply to groups

of regressor variables. ,For example, let F represent the set of variables

X
l'
X
2'

X' ; let G represent the set X4,X5 and let T represent X8,X.7 and X8.

Then.

R2(F) =
R2(X1X2X3)

R2(G) = R.2(X4X5)

R
2
(H) = R (X6X7X8)

R2(FG) = R
2
(X1X2X1X4X5)

and'so on.

The commonality coefficient, for. two sets of variables, say F and

G, is then

C(FG) = R
2
(FGH) - R2(H) C(F) C(G)

by extension of equation (3) and other commonality coefficients follow

directly. Note that interpretation of the coefficients must be modified

slightly now; for example, a unique contribution may refer to the variation

explained by a group of variables rather than a single one. The grouping

device will be used in the example which follows.

An Example

To illustrate the use of commonalities we shall use some data

6/
collected as part of the Educational Opportunities Survey (E0S).

6/ Coleman, J.S., et al., anallty of Educational Opportunity. U.S.
Department of Health, Education and Welfare; National Center for
Educational Statistics, (0E-38001). Washington, D.C. 1966, U.S.
Government Printing Office Catalog No. FS 5.238:38001.



The dependent variable is an index of achievement developed from the

EOS data.-
7/

A large number of regressor variables were separated into

four groups as follows: student background variables (B), teacher

variables (T), school program variables (P) and school facilities

variables (F). Since this note is primarily concerned with methodology

we need not go deeper into the nature of these variables; readers more

.interested in the content should refer to Mayeske, et al.8/

Table 2 displays the set of commonality coefficients for the

data. For second and higher orders a table entry is made for each

variable with which a coefficient is associated.

If Mayeske, G.W. and F.D.Weinfeld, Factor Analysis of Achievement1 0 Division of
Operations Analysis, Technical Note No. 21, January 18, 1967.

8/ Mayeske, G.W., F.D.Weinfeld, A.E.Beaton, Jr., and J.M.Proshek,
Correlational and Re ressioit al sis of Differences Between the

i...2itieEorturrvr., Division of Operations Analysis, Unpublished
manuscript.



Table 2

Commonality Coefficients

: 11

Commonality Sets of Regressor Variables
Coefficients

B T P. F

. gB) .1061

IRO .0167
First
Order U(P) ' .0125 .

.

u(F) .

. .0038

C(BT) .4891 .4891
.

.

.

C(BP) .0137 ..0137
Second
Order C(BF) .0004 .0004

C(TP) .0066 ;0b66

C(T1)
..-.0009 =.00O :

C(PF) .0050 .0056

COTO .1197 ..1197 .1191

C(BTF) .0304 :0304 .0304

Third C(BPF) .0052 .0052 .0052
Order

C(TPF) .6018 .0018 .6018

ourth OW1311..0561 .0561 .0561 .0561
Order

. .

. R2for a
Single Set of .8207 .7195 .2206 .1018
Variables



The last row of the table sums the coefficients for each column thus

giving the square of the multiple correlation coefficient for each

individual variable as suggested by equation (12). The sum of all

coefficients is R
2
(BTPF) as .8662.

This set of results shows how knowledge of the higher order

commonalities can provide additional insight into the relationship

among the variables. Looking at only the unique contributions of

the variables suggests that the student background variables with

U(B) m .1061 outweigh the others in explaining achievement. How-

ever, the second order coefficient between student background and

teacher variables is .4891, the largest of all coefficients. This means

that when these two sets of variables are added to the regression last,

the reduction in unexplained variance is substantially more than can

be attributed to each set individually on the basis of first order

coefficients. Though we are not able to further separate this joint

contribution we are at least warned that the effect of the teacher

variables may be much greater than was indicated by the first order

coefficients.

The joint effects also carry through to higher order comonality

coefficients. Thus C(BTP) is .1197, the second largest coefficient, and

C(BTPF) is .0561 the fourth largest. Consequently, one has good reason
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'?)
_ a

e

'3

to guard against. rejecting school variables in general and especially

teacher variables as determinants of achievement. 'Resolution of the

ambiguity is another matter however for it is generally agreed that

correcting the effects of multicollinearity requires the acquisition of.

new data.
2./

The perhaps unexpected result that commonalities can be negative

is evic:tent from Table 2. Re-examination of their development shows

that, unlike the unique sums. of squares, they are not constrained from

being negative. Exactly how negative commonalities ihOuld be interpreted

is, at this time, an open question though the previously cited reference by

Newton and Spurrell offers a geometric explanation for' their occurence.

Acknowledgement

The notion of commonalities was suggeSied by A. M. Mood in a

personal communication in which he developed the reduced form and the

symbolic form of the Appendix. The author has also benefited from

discussions with D. S. Stoller, F. D. Weinfeld, G. W. Mayeske and J. M.

Proshek.

9/ See for example, J. Johnston, Econometric Methods, (New York:
McGraw-Hill, 1963, p.207).

11M.101111.1.4111.11.....
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Partitionin in the n-variable Case

Writing out expresbions for commonalities in the n-variable case

requires some set notation to keep track of the variables. We will use

the following:

V The set of all variables X1,X2,---,Xn.

VJ . A subset of V
n

containing j members.

V The complement of Vj.

V1 A subset of Ocontaining i members..

1141 The set of all possible VI for a given Vi;

The number of members in the set is (i ) = i!

Vlvi The union of the sets 0 and V.

For the three :variable case the set memberships are given in Table Al.

The commonality definitions may be written as

y1(V1) = S(Vn) - S(V1)

72(V2) = S(Vn) - S(V2) -E 71(V1)
pit

73(0) = S(Vn) - s(V3) - E 72(V1) - E y1(4.)

{v3} Ivil

7 (Vk) = S(Vn) - E y (V16 ) - 2:
k-1 m-1

111_11

(Vs) = S(Vn) 22 711_1(vn-1)
iv111_11

-2
(V
k-2

) -

y
1
(Vi)

La

1V11

EYn-2(Vit11.2) - E xfvnx

1V111_21 1V11} i 11



Set Symbol)

vi

vi2

15

-2 2
V vl

V

v-3

V2
2

V3V3

ii3V?

Set Memberships

xi

X2
X3 X,X

3 :

XnX3

X
1
X2

X3

X. X1 3
X2

X2 X3

xi

X2

X
2
X3 X X2

3 .

X2 X3I X
1

X2

X3

X1 X3

XX X
1 2 3

empty

xx12
X

1
X2

xi

xx13
X

1
X3

X2

X
2
X3

X2X3

X3

- ,
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The number of k
th

order commonalities is n:/k:(n-k)! and

consequently the total number of commonalities is 9n-1,

The reduced forms may be written as

I
(V1) = S(Vn) S(V1)

Y2(V2) -S(Vn) + E s(v2v1) so2)
Ivit

Y3 173) = s(vn) - 2: scovb + .E s6r3vb - S(0)

1
10)2f tvil

fvks (.4)k+1
)

[s(vn-
- E s("ikvt_l) + s(

1-7°171C-2)ic' '

It]) IV
k-2}

.
.......(.4)k+i E so7kvq_ s(iik)

{vi}1

(yn) (-1)nf$(vn) E sornn.,, + E soin_2)n npn_il Ki_21
......(-1)n.+1 soinid

1v31

An alternative way of keeping track of the variables for the

reduced form is by a symbolic form for the argument. We give an

example first and then write the general form. A second order
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commonality in the three variable case may be written as

7'2(v2) = (Xi X ) = S -(1-X1) (l-Xj)M

The meaning of the symbolic expression on the right is that the product

in the brackets is first multiplied out and then the absolute value of

each term becomes an argument for a sum of squares with the sign of

the term carrying over.as the sign on the sum of squares. That is,

72(XiXj) = S [-(l-Xi)(1-Xj)Xkl

= SEXO-XjXktXiXk-Xiyk]

and upon converting from the symbolic form we have

(Al) y2(XiXj) = -S(XiXiX1k) + S(XiXi) + S(XiXk) - S(Xk).

Equation (Al) is the same as equation (7).

Using the symbolic form we may write the commonalities which

compose S(X1) as

(Xi) = S[- (1-X1)X2X3 Xn]

72 (XiX2) SEtft(1"*X j)(1.'*X2) X3X4 Xn]

7 ) =
n-1 1 2 n-1

(X
1
X
2
...X

n
) = S[1-(1-X )(1-X

2
)...(1-X )]

The other commonalities have analogous forms.

1.4.


